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Basic Idea

Basic Idea of Instrumental Variable (IV):
I What if we have a variable that is correlated with X but not with Y
I Then any changes in Y caused by that variable will reflect causal changes

by X

Equation of interest:

Yi = β0 + β1Xi + εi

IVs break X into two pieces that are themselves uncorrelated:

Xi = γ0 + γ1Zi + ηi

I A piece that is not correlated with ε (Cov(Z , ε) = 0)
I A piece that is correlated with ε (Cov(η, ε) 6= 0) – source of the

endogeneity problem
I Finally, Cov(Z , η) = 0

Zi is an instrumental variable
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Terminology Review

A “Good” Regression:

X ε

Y

Exogenous

Endogenous

Exogenous Variables: Variables in the data that do not cause each other
I ε is always exogenous, so exogenous also just means variables not

correlated with ε

Endogenous Variables: Variables that are determined by exogenous variables
in the model

I ε is always in Y so Y is always endogenous
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Omitted Variable Bias with Pictures

Selection/OVB:

X

ε

Y

Exogenous

Endogenous

In this picture X is endogenous because ε now causes X as well

What if there is another exogenous variable that does not directly cause Y ?
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Omitted Variable Bias with Pictures

Instrumental Variable:

X

ε

Y

Z

Exogenous

Endogenous

Z causes Y only indirectly through X

We can estimate “causal effect” of Z on Y and this MUST be the causal effect
of Z on X and the causal effect of X on Y

I Mathematically we need to split effect of on Z on Y into effect of Z on X
and X on Y

I Related concept in statistics: Path Analysis

Paul T. Scott NYU Stern Econometrics I Fall 2018 6 / 78



Formal Definition of an Instrumental Variable

Model:
Yi = β0 + β1Xi + εi

We call a variable Z a a valid instrumental variable if the following
two conditions hold:

1 Relevance: Cov(X ,Z ) 6= 0
I An arrow from Z to X in the pictures

2 Exogeneity: Cov(ε,Z ) = 0
I No arrow from Z to Y or Z to ε in the picture
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Key Assumption #1 of Instrumental Variables

Relevance: Cov(X ,Z ) 6= 0

This assumption just means that X and Z are correlated

We observe both X and Z , so can easily test this assumption by
regressing:

Xi = β0 + β1Zi + εi

If β1 6= 0 in regression, we say instrument is relevant
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Key Assumptions #2 of Instrumental Variables

Exogeneity: Cov(ε,Z ) = 0

This assumption means that Z and ε cannot be correlated

We do not observe ε, so we cannot test this assumption

In general, we need to “defend” this assumption by telling a story about
why Z and ε are unlikely to be correlated

Much like parallel trends or strict exogeneity, these crucial identifying
assumptions cannot be tested on their own. However, we can test them
against each other.
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Best Defense of Exogeneity IV Assumption: Randomized
Experiment

Back to the class size example:

scorei = β0 + β1CSi + εi

where:
I scorei : Test score of student i
I CSi : Class size of student i

Suppose that we use a coin flip that sends kids that get a “head” to a
small class and kids getting a “tails” to big class

I This is our randomized experiment!

Let’s call the coin flip our instrument Z (where Zi = 1 if heads, Zi = 0
if tails)
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Best Defense of Exogeneity IV Assumption: Randomized
Experiment

scorei = β0 + β1CSi + εi

Is Z (our coin flip) a good instrument?

Relevance: Cov(CS ,Z ) 6= 0? Yes, if Zi = 1 kid gets small class, if
Zi = 0 kid gets big class

I So the regression CSi = β0 + β1Zi + εi will estimate that β1 < 0

Exogeneity: Cov(ε,Z ) 6= 0? Untestable – so need to tell a story
I Story: Exogeneity holds because coin flip is random and does not depend

on any student or parent characteristics that would affect test scores.
Therefore, there is nothing related to Z (besides X ) that is also related to
test scores, so ε and Z must be uncorrelated.
This is a good story! It’s the “magic” of randomization.
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Randomized Experiment as an IV

So a randomized experiment can be treated as an IV, but there is a big
difference in how we evaluate the assumption for an experimental or
non-experimental setting

When running an experiment, the exogeneity assumption is justified if
the randomization was implememented in way that was not correlated
with anything else that could influence outcomes. Attrition and
manipulation can undermine exogeneity in an experimental context if
they create a correlation between treatment status and other factors
that might influence outcomes. Thus, exogeneity amounts to an
assumption about how the randomization was implemented.

In contrast, the IV exogeneity assumption in a non-experimental context
is a broad and vague assumption about how the world works; it’s much
more difficult to interpret and evaluate. The same is true of strict
exogeneity or parallel trends.
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IV Estimation: Example with a 0/1 Z

Let’s begin with the simplest 0/1 model (this time for Z ):

Yi = β0 + β1Xi + εi

Now X is endogenous but we have a 0/1 instrument, Z
I Because Z is 0/1 we can focus on group means.

What assumptions do we need to make?
I Cov(X ,Z ) 6= 0
I Cov(Z , ε) = 0

The intuition from above: solve for the “indirect” effect of Z on Y
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The Relationship Between Y on Z

What is the relationship between Y and Z?

E (Y |Z ) =E (β0 + β1X + ε|Z )

=β0 + β1E (X |Z ) + E (ε|Z )︸ ︷︷ ︸
=0

=β0 + β1E (X |Z )

Since Z is 0/1...

E (Y |Z = 1) =β0 + β1E (X |Z = 1)

E (Y |Z = 0) =β0 + β1E (X |Z = 0)

Rearranging...

E (Y |Z = 1) – E (Y |Z = 0) = β1 × (E (X |Z = 1) – E (X |Z = 0))
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The IV Regression for a 0/1 Z

From the previous slide we have:

β1 =
E (Y |Z = 1) – E (Y |Z = 0)

E (X |Z = 1) – E (X |Z = 0)

From the LLN we can construct the following estimator:

β̂1 =
Ȳ1 – Ȳ0

X̄1 – X̄0

The subscript refers to Z = 1 or Z = 0

We call this the IV estimator estimator

Identification refers to finding population moments with sample
analogs that solve β1 (LLN implies it will work)
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Interpreting the Estimator for 0/1 Z

Estimator:

β̂IV1 =
Ȳ1 – Ȳ0

X̄1 – X̄0

For a 0/1 X we look at the change in Y over the change in X :

β̂OLS
1 =

ȲX=1 – ȲX=0

X̄X=1 – X̄X=0
= ∆Ȳ

I For a 0/1 X , ∆X̄ = 1
I Basically looking at how much Y changes for a change in X

Intuition for a 0/1 Z
I The effect of X on Y is still the change in Y over a change in X
I Use the change in Y given Z to shut down the effects of ε
I Use the change in X given Z to get the right scaling
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The IV Regression with a Continuous Z

Same model as before:
Yi = β0 + β1Xi + εi

Now assume that Z is continuous

How to capture the indirect effect of Z?
I Intuition from OLS: use the covariance between Z and Y as a measure of

the relationship:

Cov(Y ,Z ) =Cov(β0 + β1X + ε,Z )

=β1Cov(X ,Z )

I Rearranging:

β1 =
Cov(Y ,Z )

Cov(X ,Z )

Instrumental Variables Estimator:

β̂IV1 =
sYZ
sXZ
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IV Intuition

I will formalize the idea and the math behind IVs with a simple example

Suppose that we are interested in investigating the effect of studying on
grades:

Yi = β0 + β1Xi + εi

where
I Yi : is GPA
I Xi : is study time (hours per day)

We expect that our OLS estimator β̂1 will be severely biased here (why?)
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IV Model

To get rid of OVB, we shall use an IV

One possible IV: whether your roommate has a N64 (or
playstation/whatever video game console kids use today)

Important feature: Roommates are randomly assigned in college
I At least at Berea College (Kentucky) where this example comes from (see

Stinebrickner and Stinebrickner (2008))
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Instrument Validity

First thing for any instrument is to think of validity. Two conditions:
I Instrument is N64, which is indicator variable that your roommate has

N64

1 Relevance: Cov(Z ,X ) 6= 0; here Cov(N64, study) 6= 0
I Seems likely to hold as everyone prefers playing Mario Kart to studying
I Testable

2 Exogeneity: Cov(Z , ε) = 0; here Cov(N64, ε) = 0
I Untestable
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Thinking About Exogeneity

Exogeneity: Cov(Z , ε) = 0

“Storytime” should talk about how two things hold
1 People do not select into Z in some manner that is likely to be correlated

with Y
I Concern: People that pick roommates that are “fun” and have N64s are

likely people who do not care too much about grades

2 Z only affects Y through X
I Concern: Having a roommate with a video game affects your GPA through

other means than affecting your study hours

Either story “invalidates” the instrument (but in different ways)
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Thinking About Exogeneity

1 Selection story: there is an omitted variable related to both Z and Y
I Example: omitted variable is effort because students that really put in a

lot of effort make sure they do not get a roommate with N64

2 Other channel story:
I Possible Story 1: Mario Kart helps me grasp physics, so I ace my physics

exam
I so Z directly affects Y independent of X

I Possible Story 2: Other people hang out in our room due to our N64,
making it really loud and so I cannot study effectively

I so Z affects Y through another X
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IV Directly into Model

Suppose that our IV assumptions hold

Then we can just directly replace X with our IV in our model:

Yi = π0 + π1Zi + εi

where
I Yi : is GPA
I Zi : is whether roomate has N64

Interpretation of β̂1: Having a roommate with a N64 causes a β̂1
decrease in GPA

I Causal effect because validity of instrument, cov(Z , ε) = 0, implies OLS is
consistent for above equation. Of course we could question the
instrument’s validity.

But we want the effect of studying on GPA!
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Two Stage Least Squares

A popular IV estimator is Two Stage Least Squares (2SLS)

This effectively runs regression Yi = β0 + β1Zi + εi , but scales β1 by
how much Z affects X

I If Z affects X at one-to-one rate, β1 in above regression will capture
effect of X

I If Z affects X only a little, we need to scale β1 up a lot to say what effect
of X on Y is

We therefore estimate in two steps:
1 Regress X on Z to capture effect of Z on X
2 Regress fitted values of step 1 to capture effect of X on Y

Under IV assumptions, this gives us causal effect of X on Y
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2SLS Implementation

Step 1: regress

Xi = π0 + π1Zi + ηi

Step 2: take your predicted values from Step 1, X̂i , and regress

Yi = γ0 + γ1X̂i + εi

Under IV assumptions, step 1 finds the “good part” of X (that is not
related to ε), and then step 2 takes that “good part” of X as a
regression to find the causal relationship between X and Y
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2SLS Estimator

Why is β̂2SLS
1 =

Cov(Y ,Z)
Cov(X ,Z)

?

True model:

Yi = β0 + β1Xi + εi

Take covariance of both sides with respect to Z :

Cov(Yi ,Zi ) = Cov(β0 + β1Xi + εi ,Zi )

Cov(Yi ,Zi ) = Cov(β0,Zi ) + Cov(β1Xi ,Zi ) + Cov(εi ,Zi )

Cov(Yi ,Zi ) = 0 + β1Cov(Xi ,Zi ) + 0 since Cov(εi ,Zi ) by assumption

=⇒ β1 =
Cov(Y ,Z )

Cov(X ,Z )
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Single Variable IV in R: Manually

Data:
I Yi : is GPA
I Xi : is study time (hours per day)
I Zi : is indicator for roomate having N64

Running 2SLS by doing both steps manually:

Step 1: Regress Xi = π0 + π1Zi + vi and get predicted study time, X̂i
I Data$xHat = predict(lm(X∼Z, data=Data))

Step 2: Regress yi = γ0 + γ1X̂i + εi
I m3 = lm(Y∼xHat, data=Data)
I coeftest(m3, vcov = vcovHC(m3, type = “HC1”))

I Note: Standard errors will be wrong!

I predict gives the fitted values of X from the first stage
I Then lm can be used to get the second stage
I Problem: the standard errors (even robust) will be wrong
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Doing Single Variable IV in R: All at once

Need a new package called AER for this
I install.packages(“AER”)
I library(AER)

R can run 2SLS all at once:

m4 = ivreg(Y ∼ X | Z, data=Data)

Use new standard error command to get “right” standard errors:
I coeftest(m4, vcov=sandwich)
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IV Setup with Matrix Notation

Consider a multiple regression equation

y = βX + ε

The IV assumptions are now that
I Cov (zi , εi ) = 0
I Cov (zi , xi ) has full rank, i.e., rank K , where K is the number of

regressors in x

We can have multiple regressors as well as instruments. Some regressors
can also be instruments; if zi = xi then we can just use OLS.

Regressors that are instruments are exogenous regressors. Regressors
that are not instruments are endogenous regressors.

For the rank assumption, we need at least one instrument for each
endogenous regressor.
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2SLS with Matrix Notation

The 2SLS formula is now

b2SLS =
(

X̂
′
X̂
)–1

X̂
′
y

with X̂ = Z
(
Z′Z

)–1
Z′X

With homoscedasticity, the asymptotic variance of the estimator is

Var (b2SLS ) =
s2

n

[
Z′X

(
X′X

)–1
X′Z

]–1

Note: this (asymptotically correct) estimate of the variance is not equal
to the (incorrect) formula we would get from näıvely applying OLS
formulas to the second-stage regression.
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Doing General IV Case in R

IV w/ controls

m5 = ivreg(workedm ∼ morekids + boy1st + boy2nd + black + hispan
+ othrace + agem1 + agefstm | samesex + black + hispan + othrace
+ agem1 + agefstm+ boy1st + boy2nd, data=babyData)

Standard errors:

coeftest(m5, vcov=sandwich)

Still use the pipe to put in the first stage

Need to include all exogenous variables on BOTH sides of the pipe!

Inference does not change at all
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Comparing 2SLS Variance to OLS Variance
under Homoscedasticity

For the single-variable case, we can show that

Var(β̂2SLS ) =
1

N

σ2

σ2
XR

2
XZ

R2
XZ is the R2 from the first stage regression of X on Z

OLS variance under homoscedasticity: Var(β̂OLS ) = 1
N
σ2

σ2X
I Since R2

XZ ≤ 1, IV variance is larger
I The higher first stage R2

XZ , the lower the variance. If X and Z are
collinear, variance is equivalent to OLS.

I If R2
XZ ≈ 0 then variance blows up!
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Unbiasedness “Proof”

E[β̂2SLS
1 ] = E


N∑
i=1

(zi – z̄)(yi – ȳ)

N∑
i=1

(xi – x̄)(zi – z̄)



= E

β1 +

N∑
i=1

(zi – z̄)εi

N∑
i=1

(xi – x̄)(zi – z̄)



= β1 +

N∑
i=1

(zi – z̄)E[εi ]

N∑
i=1

(xi – x̄)(zi – z̄)

= β1 + 0
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Checking The IV Assumptions I

The two major assumptions:
1 Relevance: Cov(X ,Z ) 6= 0, or that E

[
zix
′
i

]
has full rank

2 Exogeneity: All instruments must be uncorrelated with ε

First, let’s talk about the relevance assumption.

It’s easy to check that the sample analog to Cov(X ,Z ) 6= 0, or the
analogous matrix contidition.

The more practially relevant concern is that the covariance will be close
to zero. This is called weak instruments.

How do we test and deal with weak instruments in practice?
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Weak Instruments I

However, in finite samples there’s a possibility that the sample
covariance

N∑
i=1

(xi – x̄)(zi – z̄)

is close to zero, especially if the true covariance is relatively small.

Dividing by zero is bad.

Note we don’t have the same problem in OLS as long as we have
variation in the regressors.
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Weak Instruments II

There is big problem with IV estimation: 2SLS performs terribly in
small samples

Intuition: Instrumental variables relies on Corr(X ,Z ) 6= 0
I If Cov(X ,Z ) = 0 then IV estimator is infinite!

In practice, very rarely will Cov(X ,Z ) = 0 in data (just randomness)
I Hence, IV will usually “work” with any choice of X and Z
I Realistically: Cov(X ,Z ) is small if Z only explains a small portion of X

If Cov(X ,Z ) is small we say that Z is a weak instrument
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Weak Instruments and Small Sample Bias

Suppose that Z is a bad instrument in that Cov(Z , ε) are correlated

Similar to OVB

β̂IV1 → β1 +
Cov(Z , ε)

Cov(Z ,X )
× σε
σX

Compare to OLS case (biased because of OVB):

β̂OLS
1 → β1 + Cov(X , ε)× σε

σX

Which estimator is better here?
I IV’s advantage is Corr(Z , ε) should be smaller than Corr(X , ε)
I But if instrument is weak Corr(Z ,X ) ≈ 0, then bias blows up even if

Corr(Z , ε) small

Danger of weak instruments:
I Very small bias in Z can be greatly magnified if instruments are weak
I Amplified bias may have different sign than OLS
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Weak Instruments and Inference

To do inference we rely on the CLT:

β̂IV ∼ N
(
β,Var

(
β̂IV

))
First issue: the Normal Approximation fails unless N is huge! (the CLT
does not work well)

I Intuition: β̂IV = Cov(Y ,Z )/Cov(X ,Z ).
I If Cov(X ,Z ) ≈ 0 then small changes in estimated covariance can have

huge effects on estimated coefficients

Second issue: even if the normal approximation works the variance
explodes!

I Intuition from homoscedastic case: Var(β̂IV )) = σ2/(Nσ2XR
2
XZ )

I If the R2 of X on Z is very small, then variance is very large
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How To Deal With Weak Instruments?

What are we to do if instruments are weak?

Easiest: get more instruments or better instruments

Harder: adjust how to do inference
I Turns out that if instruments are weak, asymptotic distribution of β̂ will

be the ratio of two correlated normal random variables
I Very advanced, we will not pursue this (uses LIML)

The good news: We can test Cov(X ,Z ) by regressing
xi = π0 + π1Zi + ηi

I Since Z and X are data, we can just see if π̂1 is far from zero

Rule of Thumb: Only use instrument if t-stat of null hypothesis that
π1 = 0 is ≥ 10 (much bigger than stat significance of 1.96!)

I With multiple instrument, “rule” changes to F-stat≥ 10 for joint test that
first-stage coefficients on all instruments are zero.
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Weak Instruments

The model:

Yi =β0 + β1Xi + εi

Xi =π0 + π1Z
(1)
i + π2Z

(2)
i + ... + πmZ

(m)
i + ηi

π ≈ 0 ⇒ because of sampling error it is likely that π̂ < 0 even if π > 0

If X̂ is the wrong sign or close to zero then it is very likely that β̂IV will
behave poorly

NB: As N →∞, π̂ → π exactly—so weak instruments is a small sample
problem

I Basically, if π ≈ 0 then CLT will be a bad approximation
I If π = 0 then things break even as N →∞
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The Sampling Distribution of β̂

Y = 1 + 2X + ε

Figure: Distribution of β̂ for OLS, strong IV, weak IV with N = 100
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OLS is biased with µ = 2.27 and σ2 = .008

Strong IV is unbiased (asymptotically) with µ = 1.99 and σ2 = .024

Weak IV is unbiased (asymptotically) with µ = 2.05 but σ2 = 1653.11
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The Sampling Distribution of β̂

Y = 1 + 2X + ε

Figure: Distribution of β̂ for OLS, weak IV, strong IV with N = 10000
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OLS remains biased with µ = 2.28 and σ2 = .000085

Strong IV is consistent with µ = 1.99 and σ2 = .00021

Weak IV is consistent with µ = 2.05 and even with N = 10k, σ2 = .05
I Still 100x larger variance than strong instruments!
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What is the Danger of the CLT Failing?

Clearly with weak IV, CLT fails and behaves poorly even if N is large

Who cares if E (β̂) = β?

Remember that for testing we want to reject the null hypothesis
incorrectly 5% of the time

I When the CLT fails, our trusty 1.96 critical value is way off base
I Example rejection probabilities for test that β̂ = 2

Hypothetical Situation P(|t| > 1.96)
Weak IV, N = 100 0.3%

Strong IV, N = 100 4.2%
Weak IV, N = 10000 3.2%

Strong IV, N = 10000 5.1%

I Goal should be 5% but for weak IV with N small, almost never reject; still
only 3% even for N large—this is a bad test!
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Checking The IV Assumptions II

The two major assumptions:
1 Relevance: Cov(X ,Z ) 6= 0, or that E

[
zix
′
i

]
has full rank

2 Exogeneity: All instruments must be uncorrelated with ε

Now, let’s talk about the exogeneity assumption.

With one IV, it’s impossible to test exogeneity, hence the need to
evaluate exogeneity by thinking about whether some unobserved
variables might be correlated with the instrument.

With extra instruments, we can test the IVs against each other.
Similarly, one IV allows us to test the validity of OLS.

In all cases, the most we can do is test one exogeneity assumption
against another, we can never test the validity of an exogeneity
assumption on its own.
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Overidentification

When the number of regressors equals the number of instruments, the
model is just identified. When there are more instruments than
regressors, the model is overidentified.

For a just identified model, the 2SLS estimator simplifies to

bIV =
(
Z′X′

)–1
Z′y,

which is often called simply the IV estimator.

(Derivation on board)
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A Note on Moments I

Recall the property of the OLS estimator:

X′eOLS = 0

where
eOLS = (y – XbOLS )

Similarly, for the IV estimator,

Z′eIV = 0

where
eIV = (y – XbIV )

(Derivation on board)
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A Note on Moments II

X′eOLS = 0

Z′eIV = 0

A consequence of this is that we can’t test the assumption that the
instrument(s) and error terms are uncorrelated by looking at the
correlation between the instrument(s) and residuals.

Similarly, the residuals from OLS don’t allow us to test whether the error
terms are correlated with the regressors.

However, the residuals from IV can be used to test the OLS exogeneity
assumption. Similarly, if we have more instruments than we need
(overidentification), we can test the instruments against each other.
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Wu-Hausman Test

Is OLS biased? Does the use of instrumental variables really make a
difference in results?

Intuition: we can compare the OLS and IV coefficient estimates, see if
they’re different. If they differ and we believe in the validity of the IV,
that’s evidence that OLS is biased because of an endogenous regressor.

The Wu-Hausman test implements this idea formally. It can be derived
as a Wald test using the IV and OLS regression results, and it can also
be implemented using the following regression:

y = Xβ + X̂∗γ + ε∗

where X∗ are the fitted values of X from the first-stage regression of X
on Z.

Testing γ = 0 is one way of implementing the Hausman test. It can also
be implemented using the AER package.
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Checking Instrument Validity II

Exogeneity Assumption:

Corr(Zi , εi ) for all Z

If exogeneity violated then X̂ from the first stage will still be correlated
with ε⇒ omitted variables bias

Usual case: need to assume exogeneity

With multiple instruments can [with some limitations] test exogeneity

I Intuition: if Z (1) and Z (2) are both valid instruments then using them
separately should produce the same value of β̂

I If β̂ different for different Z ’s then one Z must be bad

Paul T. Scott NYU Stern Econometrics I Fall 2018 49 / 78



Operationalizing the Intuition
Defining the J Statistic

Procedure to Test Overidentifying Restrictions
1 Estimate the model using 2SLS
2 Compute ε̂i with Xi (not X̂i ):

ε̂i = Yi – β̂0 – β̂1X
(1)
i – ...β̂mX

(k)
i

3 Regress ε̂i on all Z ’s and exogenous variables:

ε̂i = α0 + α1Z
(1)
i + ... + αmZ

(m)
i + Exogenous + εi

4 Compute the F statistic for α1 = ... = αm = 0 but do not do the
standard F test (degrees of freedom would be wrong)

5 Compute J = mF , where m is the number of instruments
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Operationalizing the Intuition
Performing the J Test

Under the null hypothesis, J ∼ χ2
m–k , where k is the number of

regressors.
I Notice: We use m – k degrees of freedom, not m
I Why? Because ε̂ is a function of β̂, which has k parameters
I If at least one α 6= 0 then at least one instrument is endogenous

The J-test:
I Calculate the J statistic
I Compare the J statistic to the critical value for a χ2m–k distribution
I Instruments are not exogenous if the test is rejected (so we want the null

to not be rejected)

This is know as Sargan’s J test, and it can be implemented using the
AER package.

We can only do this if over-identified
I If exactly identified, then Cov(ε̂,Z ) = 0 automatically
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Interpreting J Test Results

What happens if we reject the null?
I The α that is non-zero does not necessarily indicate the problematic

instrument —ε̂ is itself not unbiased if IV assumptions violated
I Need to think hard about which instruments may be invalid

What happens if we do not reject the null?
I None of your instruments contradict each other by predicting very

different ε̂’s
I Does NOT imply that instruments must be valid—could all be invalid in

the same way
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Simultaneous Equations Models

New Model:

Yi = β0 + β1Xi + εi

Xi = α0 + α1Yi + νi

In many economic environments, variables both determine each other
“in equilibrium” or are determined together “jointly”

A model where X and Y “cause” each other is called a simultaneous
equations model

Examples:
I Angrist & Evans is an example of this: labor supply and fertility decisions

are determined jointly, there is no one-way channel
I Supply and demand is the canonical example: supply equations and

demand equations are of interest but in equilibrium only observe S = D
I Also common in macroeconomic environments: interest rates,

unemployment rates, etc.
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Simultaneity Bias

Direct Effect of X on Y :
Yi = β0 + β1Xi + εi

First let’s solve for X and Y jointly

Xi = α0 + α1Yi + νi

= α0 + α1(β0 + β1Xi + εi ) + νi

= α0 + β0α1 + α1β1Xi + α1εi + νi

Which implies...

Xi =
α0 + α1β0 + νi

1 – α1β1
+

α1
1 – α1β1

× εi︸ ︷︷ ︸
OVB
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Simultaneity Bias

Direct Effect of X on Y :
Yi = β0 + β1Xi + εi

What happens with OLS? Think about the OVB equation:

β̂OLS
1 → β1 +

Cov(X , ε)

Var(X )

= β1 +
Cov

(
α0+α1β0+νi

1–α1β1
+ α1

1–α1β1
× εi , εi

)
Var

(
α0+α1β0+νi

1–α1β1
+ α1

1–α1β1
× εi

)

= β1 +

σεν+α1σ
2
ε

1–α1β1
σ2
ν+α

2
1σ

2
ε+2α1σεν

(1–α1β1)2

= β1 + (1 – α1β1)× α1σ
2
ε + σεν

α21σ
2
ε + σ2ν + 2α1σεν
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Understanding Simultaneity Bias

OLS with Simultaneity:

β̂OLS
1 → β1 + (1 – α1β1)× α1σ

2
ε + σεν

α2
1σ

2
ε + σ2

ν + 2α1σεν

Consider the special case that ε and ν are independent:

β̂OLS
1 = β1

σ2
ν

σ2
ν + α2

1σ
2
ε

+
1

α1

α2
1σ

2
ε

σ2
ν + α2

1σ
2
ε

OLS becomes a weighted average of two pieces:
1 β1: the effect of X on Y
2 1/α1: the feedback loop from Y to X back to Y

This is simultaneity bias
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IV Can Solve Simultaneity Bias

Why cover simultaneity bias now?

New Model:

Yi =β0 + β1Xi + εi

Xi =α0 + α1Zi + α2Yi + νi

If we have data on Z , we can potentially use Z as an instrument!

What conditions would Z have to fulfill?
1 Instrument Relevance: α1 > 0
2 Instrument Exogeneity: Cov(Zi , εi ) = 0
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Example: Angrist & Evans

Model:

Hoursi =β0 + β1Childreni + εi

Childreni =α0 + α1Hoursi + α2SameSexi + νi

Hours and children are determined jointly

Also Cov(ε, ν) is unlikely to be 0
I Education can matter for both number of children and hours worked (so

education is part of ε and ν)
I Being married may matter for both
I Quality of non-financial benefits (e.g., maternity leave)

So formally, the instrument SameSex is supposed to help solve
simultaneity
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Example: Angrist & Evans
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Example: Porter (1983)

The Joint Executive Committee’s (19th Century railroad cartel) main
business was transporting grain from Midwest to ports on East Coast.

Porter (1983) estimates the following simultaneous system:

demand: logQt = α0 + α1 logPt + α2Lt + U1t

supply: logPt = β0 + β1 logQt + β2St + β3It + U2t

where
I Qt is the quantity (tonnage of grain) transported by the JEC
I Pt is the price per ton of grain transported
I Lt is a dummy for whether the Great Lakes were open to navigation
I St is a vector of time dummies
I It is an indicator for whether the JEC was colluding
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Example: Porter (1983)

demand: logQt = α0 + α1 logPt + α2Lt + U1t

supply: logPt = β0 + β1 logQt + β2St + β3It + U2t

Note that Lt , a demand shifter, can be used as an instrument for supply.

Also note that It , a supply shifter, can be used as an instrument for
demand.

We can apply 2SLS to each equation, but it is somewhat more
asymptotically efficient (i.e., smaller standard errors) to estimate the
two jointly (see multi-equation GMM).
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Example: Porter (1983)
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Example: Roberts and Schlenker (2013)

How much does biofuels mandate raise price of grains? It depends on
supply and demand.

Roberts and Schlenker (2013) estimate the following supply and demand
equations:

demand: logQdt = α0 + α1 logPdt + εdt

supply: logQst = β0 + β1 logPst + β2ωt + εst

where
I Qst is global grain supply (calories)
I Qdt is global grain consumption (Qst 6= Qdt because of storage)
I The prices are measured at different times (planting vs harvest time)
I ωt is a yield shock (due to weather), used as an instrument for demand
I ωt–1 is used as an instrument for supply (through storage, past

production matters for current prices)
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Example: Roberts and Schlenker (2013)
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Measurement Error in X

Recall the issue of having measurement error in X :

Yi =β0 + β1Xi + εi

=β0 + β1X
∗
i + β1(Xi – X ∗i ) + εi︸ ︷︷ ︸

“New” Error Term:Vi

=β0 + β1X
∗
i + Vi

X ∗i and Vi likely to be correlated because X ∗ is part of V

Extra assumptions:
I Classical Errors-in-Variables:

Xi = X ∗i + ui

with u being independent of X and ε (just noise)
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Measurement Error in X

Recall that

β̂OLS →β1Cov(X ,X ) + 0

Var(X + u)

=β1 ×
Var(X )

Var(X + u)

=β1 ×
σ2X

σ2X + σ2u︸ ︷︷ ︸
Attenuation

Estimated coefficient converges to the truth times an attenuation term
I Attenuation term is less than 1 ⇒ pushes coefficient towards zero

I NB: It does not make the term more negative—it dampens the coefficient
and preserves the sign
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Measurement Error and IVs

Yi =β0 + β1Xi + εi

=β0 + β1X
∗
i + β1(Xi – X ∗i ) + εi︸ ︷︷ ︸

“New” Error Term:Vi

=β0 + β1X
∗
i + Vi

How do we address attenuation bias using instrumental variables?
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Generalized Method of Moments I

The Generalized Method of Moments includes everything we’ve done so
far, and more.

Moments are expectations of functions of the data:

E [m (yi , xi ;θ0)] = 0,

where θ0 is the true value of a vector of parameters of interest.
Typically, we consider moments that are equal to zero – if they were set
equal to something else, we could just subtract that from both sides.
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Generalized Method of Moments II

A crucial ingredient for the method of moments is that the sample
analog of a moment,

n–1
n∑

i=1

m (yi , xi ;θ)

will converge to the true analog, as long as θ = θ0 (law of large
numbers)

Furthermore, if the problem is set up well (i.e., if the model is
identified), then

n–1
n∑
i

m (yi , xi ;θ) 9 0

for any value of θ 6= θ0.
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Generalized Method of Moments II

n–1
n∑
i

m (yi , xi ;θ0)→ 0

∀θ 6= θ0 : n–1
n∑
i

m (yi , xi ;θ) 9 0

Thus, let’s try to find a parameter vector θ̂ such that

n–1
n∑
i

m
(
yi , xi ; θ̂

)
= 0

Intuitively, in a large sample, this θ̂ should be close to the true
parameter.
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OLS and IV as Method-of-Moments

OLS can be derived as a method of moments estimator based on the
moments

E [xiεi ] = 0
or

E
[
xi
(
yi – x′iβ

)]
= 0

Similarly, IV estimation comes from the moments

E [ziεi ] = 0
or

E
[
zi
(
yi – x′iβ

)]
= 0
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GMM Assumptions

1 Moments:
E [m (yi , xi ;θ0)] = 0

2 Assumptions on data generating process so that

n–1
n∑

i=1

m (yi , xi ;θ)→ E [m (yi , xi ;θ)]

i.i.d. observations (yi , xi ) does the trick, but we can also make do with
weaker assumptions (ergodic stationarity).

3 Identification. E [m (yi , xi ;θ)] 6= 0 for all θ 6= θ0
4 Some conditions to ensure asymptotics are “well-behaved”. Note: for

finite samples, sample moment won’t be exactly zero at true parameter,
but we want to ensure that if

n–1
n∑
i

m
(
yi , xi ; θ̂

)
= 0,

then θ̂ is close to θ0.
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GMM Implementation

The sample moments can be written as a function of a parameter
conjecture θ:

m̄n (θ) = n–1
n∑
i

m (yi , xi ;θ)

We define a GMM objective function using a weighting matrix Wn,
which should be positive definite:

qn (θ) = m̄n (θ)′Wnm̄n (θ)

The GMM estimator is defined as follows:

θGMM = arg min
θ

qn (θ)
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Weighting Matrix

qn (θ) = m̄n (θ)′Wnm̄n (θ)

The weighting matrix is needed in case the moments cannot be set to
zero exactly. It tells us how to penalize violations of each moment.

In the linear IV model, the weighting matrix only matters when the
model is overidentified. Otherwise, we can find an estimate of β̂ that
sets all moments to zero exactly.

2SLS can handle overidentified models and uses the weighting matrix(
Z′Z

)–1
.
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Two-Step GMM

qn (θ) = m̄n (θ)′Wnm̄n (θ)

The weighting matrix will be asymptotically efficient if it converges to
S–1, where

S = E
[
m (yi , xi ;θ) m (yi , xi ;θ)′

]
In practice, it’s common to start with either the 2SLS weighting matrix
or an identity matrix. Using the estimates based on that initial
weighting matrix, the S can be estimated, and GMM can be run again
using Ŝ–1 as the weighting matrix.
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GMM Asympotics

Given the assumptions, the GMM estimator is consistent,

θ̂GMM → θ0,

and its asymptotic variance is given by

n–1 (Γ′WΓ
)–1

where Γ is the Jacobian of E [m (yi , xi ,θ)], and W is what the
weighting matrix Wn converges to.

To estimate the asymptotic variance, we plug in Wn for W, and we
compute Γ based on the sample moments. The jth row will be

∂m̄j (θ)

∂θ

where m̄j (θ) refers to sample mean of the jth moment.
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GMM Advantages

Not only does GMM generalize things like OLS and IV it can be used for
estimation in contexts where the linear regression model does not apply.

Major example: nonlinear models.

Econometrics II will explore more applications of the GMM framework.
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